Генерация мощных ультракоротких электромагнитных импульсов на основе эффектов сверхизлучения

Н.С. Гинзбург, И.В. Зотова

Когерентное излучение коротких электронных сгустков (когерентное спонтанное излучение)

СВЕРХИЗЛУЧЕНИЕ - когерентное излучение электронных сгустков протяженных в масштабе длины волны

СВЕРХИЗЛУЧЕНИЕ - когерентное излучение электронных сгустков протяженных в масштабе длины волны

ИПФ РАН: Железняков В.В., Кочаровские В.В. и Вл.В. Гинзбург Н.С., Зотова И.В.

 $\lambda << L_{bunch} \leq L_{cooperative}$

Кооперативная длина - длина проскальзывания излучения относительно сгустка за время развития неустойчивости

Когерентность излучения в отсутствии резонатора обеспечивается за счет:

- развития группировки;
- проскальзывания волны относительно сгустка вследствие разности групповой скорости излучения и поступательной скорости частиц.

Экспериментальное наблюдение эффектов СИ в мм диапазоне (ускоритель RADAN, ИЭФ УрО РАН – 200-300 кэВ, 0.2-2 кА, 0.5-1 нс)

Generation of subnanosecond SR pulses with GW level of peak power

IEP RAS (Ekaterinburg), IHCI RAS (Tomsk), IAP RAS

IEP RAS (Ekaterinburg), IHCI RAS (Tomsk)

Phys. Rev. E. 2006.

Ka- and X-band SR sources with high repetition rate and high average power

IHCE RAS, Tomsk IEP RAS, Ekaterinburg

SR pulse duration -	0.3-3 ns
Peak power -	0.5-3 GW
Conversion coefficient -	0.5-0.7
Repetition frequency -	300-1000 Hz
Average power -	up to 3 kW

Compact short-pulse high-current drivers (accelerators)

Institute of Electrophysics (Ekaterinburg, Russia) Institute of High Current Electronics RAS (Tomsk, Russia)

	SINUS	RADAN	SM-3NS
Voltage, kV	300-600	150-200	400
Voltage pulse duration, ns	5-20	0.2-4	5
Repetition rate, Hz	1-100	1-100	1-3500
Electrons energy, keV	300-500	200-300	250
Electron current, kA	2-5	1-2.5	2
Current pulse duration, ns	2-4	0.2-1	1

SM-3NS

Продвижение источников СИ в коротковолновые диапазоны

- Генерация импульсов СИ в сверхразмерных замедляющих системах с возбуждением поверхностных волн. Квазиоптическая теория и результаты экспериментов.
- 2. Генерация мультимегаваттных импульсов ТГц диапазона на основе ондуляторного СИ электронных сгустков, формируемых фотоинжектором.
- 3. Циклотронное СИ в режиме группового синхронизма.

Продвижение источников СИ в коротковолновые диапазоны

- Генерация импульсов СИ в сверхразмерных замедляющих системах с возбуждением поверхностных волн. Квазиоптическая теория и результаты экспериментов.
- Генерация мультимегаваттных импульсов ТГц диапазона на основе ондуляторного СИ электронных сгустков, формируемых фотоинжектором.
- 3. Циклотронное СИ в режиме группового синхронизма.

ADVANCEMENT OF SR SOURCES INTO SHORTWAVE RANGES

GW level of peak power in Xband and Ka-band $\frac{D}{\lambda} \sim 1$

Less than 10 MW in W-band and 5 MW in G-band !!

M.Yalandin, et al, IEEE Trans. on Plasma Sci. 28, 1615 (2000)

Use of low-oversize SWSs restricts

- the further increase in peak power (due to limitation in the current density);
- the advancement to shorter wavelength ranges (due to problems with beam transportation and an increase in the Ohmic losses)

ADVANCEMENT OF SR SOURCES INTO SHORTWAVE RANGES

GW level of peak power in Xband and Ka-band $\frac{D}{\lambda} \sim 1$

Less than 10 MW in W-band and 5 MW in G-band !!

M.Yalandin, et al IEEE Trans. on Plasma Sci. 28, 1615 (2000)

Excitation of the evanescent surface wave in strongly oversized periodical structures

CW SWO (Surface-Wave Oscillators)

Quasioptical model of wave propagation near a shallow corrugated surface

3D model of superradiance of electron bunch interacting with surface wave Phys. Rev. Lett. 2013

3D PIC simulations of THz superradiance (CST Studio Suite)

SUPERRADIANT EXCITAION OF SURFACE WAVE IN A CYLINDRICAL WAVEGUIDE WITH 1D PERIODICAL CORRUGATION

SUPERRADIANT EXCITAION OF SURFACE WAVE IN A CYLINDRICAL WAVEGUIDE WITH 1D PERIODICAL CORRUGATION

RADAN accelerator, IEP RAS Parameters of simulations

Acceleration voltage	300 kV
Electron current	2 kA
Electron bunch duration	0.5 ns

Mean radius of SWS3.75 mmCorrugation period0.825 mmCorrugation depth0.36 mmLength of corrugations25 mm

GENERATION OF G-BAND (140 GHz) 70 MW/0.2 ns SR PULSES IN 1D PERIODICAL SURFACE WAVE STRUCTURE

STABILITY OF DIRECTIONAL PATTERN

E,

Transverse structure of the radiation field corresponds to an axially symmetric surface wave, which can be represented as a combination of several in-phased TM0,n modes of a regular waveguide

LOSS OF AZIMUTH SPATIAL COHERENCE

 $D/\lambda > 3.5$

Depending on initial conditions, varying mixture of symmetric and non-symmetric waveguide modes arises in the directional pattern of the output radiation.

USING CYLINDRICAL SWS WITH 2D PERIODICAL CORRUGATION FOR RADIATION PATTERN STABILIZATION

$$r = \frac{\tilde{r}}{4} \left[\cos(\bar{M}\phi - \bar{h}_z z) + \cos(\bar{M}\phi + \bar{h}_z z) \right]$$

2D corrugation is superposition of two helical corrugations with opposite rotations.

 \overline{M} is the number of variations over the azimuth coordinate

Four QO wave-beams:

$$\vec{H} = \operatorname{Re}[\vec{x}_0 \left(C_z^+(x, y, z, t) e^{-i\overline{h}z} + C_z^-(x, y, z, t) e^{i\overline{h}z} \right) e^{i\overline{\omega}t} + \vec{z}_0 \left(C_x^+(x, y, z, t) e^{-i\overline{h}x} + C_x^-(x, y, z, t) e^{i\overline{h}x} \right) e^{i\overline{\omega}t}]$$

Azimuthally propagating fluxes synchronize radiation from different azimuthal segments of a large-diameter tubular electron beam.

Ka-band CW surface-wave oscillator based on 2D periodical corrugated structure Ginzburg et al, Phys. Rev. Accel. Beams 2018 N.Peskov et al IRMMW&THz 2021 MO-<u>2-5093951</u>

USING CYLINDRICAL SWS WITH 2D PERIODICAL CORRUGATION FOR RADIATION PATTERN STABILIZATION

Motion equations

$$\begin{split} &\left(\frac{\partial}{\partial Z} + \beta_0^{-1} \frac{\partial}{\partial \tau}\right)^2 \theta = \operatorname{Re}\left[\frac{\partial \hat{C}_z^+}{\partial Y} e^{i\theta}\right] \\ &\theta|_{Z=0} = \theta_0 + \xi \cos \theta_0, \ \ \theta_0 \in [0, 2\pi), \ \left(\frac{\partial}{\partial Z} + \frac{1}{\beta_0} \frac{\partial}{\partial \tau}\right) \theta\Big|_{Z=0} = \Delta, \end{split}$$

$$J(Z, X, Y, \tau) = \pi^{-1} \int_{0}^{2\pi} e^{-i\theta} d\theta_0$$

High-frequency current

Tech. Phys. Lett. 2014

Quasi-planar model

$$\begin{aligned} \frac{\partial \hat{C}_{z}^{+}}{\partial Z} + \frac{\partial \hat{C}_{z}^{+}}{\partial \tau} + i \frac{\partial^{2} \hat{C}_{z}^{+}}{\partial Y^{2}} &= i\alpha(\hat{C}_{x}^{+} + \hat{C}_{x}^{-})\delta(Y) - \frac{\chi(Z - \beta_{0}\tau)}{B_{e}} \frac{\partial}{\partial Y} (JF(Y)), \\ - \frac{\partial \hat{C}_{z}^{-}}{\partial Z} + \frac{\partial \hat{C}_{z}^{-}}{\partial \tau} + i \frac{\partial^{2} \hat{C}_{z}^{-}}{\partial Y^{2}} &= i\alpha(\hat{C}_{x}^{+} + \hat{C}_{x}^{-})\delta(Y), \\ \pm \frac{\partial \hat{C}_{x}^{\pm}}{\partial X} + \frac{\partial \hat{C}_{x}^{\pm}}{\partial \tau} + i \frac{\partial^{2} \hat{C}_{x}^{\pm}}{\partial Y^{2}} &= i\alpha(\hat{C}_{z}^{+} + \hat{C}_{z}^{-})\delta(Y). \end{aligned}$$

RESULTS OF SIMULATIONS. FORMATION OF SR PULSES IN W-BAND (90 GHz).

$D/\lambda \approx 6$

SR pulse and its expansion over azimuth modes

Structure of generated surface wave

RADAN accelerator

Appl. Phys. Lett. 2020

Parameters of electron bunch

Acceleration voltage	350 kV
Electron current	3.2 kA
Electron bunch duration	1 ns

Parameters of corrugation

Mean diameter	18 mm
Corrugation periods	2.7 mm
Corrugation amplitude	1.1 mm

Initial phase distribution is random.

Azimuth wave fluxes synchronize radiation from large-size electron bunch. This provides the output amplitude and the phase distributions close to an azimuthally symmetric mode with m=0

RESULTS OF PIC SIMULATIONS WITH EXPERIMENTAL PARAMETERS

The guided magnetic field is of 3T

RADAN accelerator

Corrugation folds =18 Number of periods =36

 $D/\lambda \approx 6$

Periodical modulation of the transverse bunch profile after passing through 2D SWS is related to formation of a standing wave by two counterpropagating azimuthal energy fluxes

GENERATION OF SPATIALLY COHERENT SR PULSES IN 2D PERIODICAL SURFACE-WAVE STRUCTURE

Experimental set-up

Appl. Phys. Lett. 2020

SWS with 18 variations over the azimuth coordinate

90 GHz W-band

Beam reprints on polymeric films installed at the SWS input and output

GENERATION OF SPATIALLY COHERENT SR PULSES IN 2D PERIODICAL SURFACE-WAVE STRUCTURE

RF breakdown of the vacuum window without shielding

Glow of the gas-discharge matrix panel located in the far-field zone

Radiation pattern corresponds to excitation of azimuthally symmetrical surface wave

Appl. Phys. Lett. 2020

Продвижение источников СИ в коротковолновые диапазоны

- Генерация импульсов СИ в сверхразмерных замедляющих системах с возбуждением поверхностных волн. Квазиоптическая теория и результаты экспериментов.
- 2. Генерация мультимегаваттных импульсов ТГц диапазона на основе ондуляторного СИ электронных сгустков, формируемых фотоинжектором.

3. Циклотронное СИ в режиме группового синхронизма.

Superradiance of extended electron bunch in undulator

Radiation of extended bunch in the absence of external resonator

Superradiance is single pulse radiation $\lambda \ll L_{bunch} \leq L_{cooperative}$

SASE (random sequence of spikes)

 $L_{bunch} > L_{cooperative}$

Pulse repetition rate regime

THz FEL Novosibirsk

Beam energy, MeV Maximum average electron current, mA	12 30
RF frequency, MHz	180.4
Bunch repetition rate, MHz	22.5
Bunch length, ps	100
Normalized emittance, mm·mrad	30
Charge per bunch, nC	1.5
RF cavities Q factor	$4 \cdot 10^{4}$

Pulse power 1 MW Average power 500 W

Superradiance of extended electron bunch in undulator

single e.bunch

Radiation of extended bunch in the absence of external resonator

Superradiance is single pulse radiation $\lambda \ll L_{bunch} \leq L_{cooperative}$

SASE (random sequence of spikes)

 $L_{bunch} > L_{cooperative}$

Averaged model based on the pondermotive force

Averaged model based on the pondermotive force

РІС моделирование коротковолнового СИ с переходом в сопровождающую систему отсчета

В лабораторной системе отсчета

электронный сгусток

Н.Гинзбург, И.Зотова, А.Голованов Письма в ЖТФ 2012 ЖЭТФ 2014

$$=\frac{H_{u}d}{10.7} \qquad \gamma = (1-\beta^2)^{-1/2}$$

d - период ондулятора

Поле ондулятора в лабораторной системе отсчета

$$H_x = H_0 \cdot ch \left[h_u \left(x - \frac{a}{2} \right) \right] \cdot \sin(h_u z) f(z) \quad H_z = H_0 \cdot sh \left[h_u \left(x - \frac{a}{2} \right) \right] \cdot \cos(h_u z) f(z)$$

В сопровождающей системе отсчета

$$K' V_{\parallel} = 0 \xrightarrow{\text{покоящийся}} \text{электронный сгусток} H'_{x} = \gamma_{0}H_{0} \cdot ch \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \sin(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

$$H'_{x} = \gamma_{0}H_{0} \cdot ch \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \cos(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

$$H'_{z} = H_{0} \cdot sh \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \cos(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

$$E'_{y} = \beta_{0}\gamma_{0}H_{0} \cdot ch \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \sin(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

$$E'_{y} = \beta_{0}\gamma_{0}H_{0} \cdot ch \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \sin(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

$$E'_{y} = \beta_{0}\gamma_{0}H_{0} \cdot ch \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \sin(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

$$E'_{y} = \beta_{0}\gamma_{0}H_{0} \cdot ch \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \sin(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

$$E'_{y} = \beta_{0}\gamma_{0}H_{0} \cdot ch \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \sin(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

$$E'_{y} = \beta_{0}\gamma_{0}H_{0} \cdot ch \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \sin(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

$$E'_{y} = \beta_{0}\gamma_{0}H_{0} \cdot ch \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \sin(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

$$E'_{y} = \beta_{0}\gamma_{0}H_{0} \cdot ch \left[h_{u}\left(x - \frac{a}{2}\right)\right] \cdot \sin(\omega'_{u}t' + h'_{u}z') \cdot f(t' + z'/V_{0})$$

РІС моделирование коротковолнового СИ с переходом в сопровождающую систему отсчета

Код KARAT

Н.Гинзбург, И.Зотова, А.Голованов Письма в ЖТФ 2012 ЖЭТФ 2014

Параметры моделирования в лабораторной системе К

Период ондулятора 4 см Магнитное поле 2.4 кЭ Поперечный размер волновода 0.7 см

Энергия электронов	4.5 МэВ
Заряд сгустка	1.2 нКл
Длительность	
сгустка	15 пс
Поперечный размер	0.2 см

В сопровождающей системе К' волна накачки набегает на покоящийся электронный сгусток

РІС моделирование коротковолнового СИ с переходом в сопровождающую систему отсчета

Импульс, излученный в +z' 1 направлении. В лабораторной системе отсчета соответствует H4 $(h'_{\mu} - h'_{s})l'_{e} << 2\pi$ компоненте

0.0 0.5 1.0 1.5 2.0

РІС моделирование коротковолнового СИ с переходом в сопровождающую систему отсчета жэтф 2014

Код KARAT

Параметры импульса СИ в лабораторной системе отсчета

Плотность мощности~30 МВт/смДлительность~15 псЧастота~ 1 ТГц

Possibility of generation of light pulses based of SR from High-energy electron bunches

2D PIC simulations of SR in comoving reference frame

Parameters in lab frameUndulator length2 mUndulator field2.5 kGBunch charge1 nCBunch duration50 fsGap between plates1 mm

Laser wake-field acceleration at PEARL facility (Institute of Applied Physics RAS)

Продвижение источников СИ в коротковолновые диапазоны

- Генерация импульсов СИ в сверхразмерных замедляющих системах с возбуждением поверхностных волн. Квазиоптическая теория и результаты экспериментов.
- 2. Генерация мультимегаваттных импульсов ТГц диапазона на основе ондуляторного СИ электронных сгустков, формируемых фотоинжектором.

3. Циклотронное СИ в режиме группового синхронизма.

Сверхизлучение в квантовых системах

Классический аналог - циклотронное сверхизлучение

Циклотронное СИ движущегося электронного сгустка в свободном пространстве Н.С. Гинзбург, И.В. Зотова, А.С. Сергеев (1989)

 $\varepsilon = 1$ H = 1 H = 1 H = 0 $H = 1 + V_{||0}/c$ $P = 1 + V_{||0}/c$ $P = 1 + V_{||0}/c$ $R = 1 + V_{||0}/c$ $R = 1 + V_{|$

Циклотронное сверхизлучение электронного сгустка в режиме группового синхронизма с волноводной модой

В сопровождающей системе отсчета (излучение неподвижного электронного сгустка на квазикритической частоте)

 $\omega'_H \approx \omega_c$

<u>Преимущества режима группового синхронизма</u>

 снижение чувствительности к продольной динамике электронного сгустка, вызванной кулоновским расталкиванием
 увеличение инкремента развития СИ неустойчивости вследствие малой скорости выноса энергии из электронного сгустка

Экспериментальное наблюдение циклотронного СИ в мм диапазоне

Phys.Rev.Lett. 1997

Параметры эксперимента

Напряженность ведущего магнитного поля 11-16 кЭ Рабочая мода TE₂₁ (TE₀₁) Радиус волновода 0.5 см

Ток пучка	250 A
Энергия электронов	200 кэВ
Длительность	
электронного импульса	400 пс
Питч-фактор	~1

Экспериментальное наблюдение циклотронного СИ в мм диапазоне

Phys.Rev.Lett. 1997

РІС моделирование циклотронного СИ в ТГц диапазоне

Дисперсионные характеристики рабочей моды TE13 (пунктир), низших TE мод (сплошные линии) и пучка (красная линия)

Параметры моделирования

2 МэВ
200 A
10+30+ 10 ps
0.15
15%
1.4 mm
34 cm
TE ₁₃
10.7 T

РІС моделирование циклотронного СИ в ТГц диапазоне

Геометрия пространства взаимодействия и мгновенное положение макрочастиц

Импульс СИ и его спектр

РІС моделирование циклотронного СИ в ТГц диапазоне

Поперечная структура излучения, соответствующая селективному возбуждению рабочей моды

Спасибо за внимание!