Алмазный фотокатод для фотоинжектора

А.М. Горбачев, ИПФ РАН

Фотоинжекторы - ключевой элемент современной физики ускорителей необходимый для создания высокачественных электронных пучков для высоко-градиентных ускорителей, ЛСЭ террагерцового и рентгеновского диапазона и других разнообразных ускорительных приложений.

Принцип действия СВЧ фотоинжектора

1. Фотоэмиссия из фотокатода под воздействием импульсного УФ лазерного излучения (hv≥Aвых) электронных сгустков с длительностью лазерного излучения

2. Инжекция эмитированных сгустков непосредственно в ускоряющую фазу поля СВЧ резонатора при синхронизации лазерного импульса и СВЧ источника

3. Ускорение сгустка в СВЧ резонаторе и формирование пучка высокоэнергичных электронов

Типичные параметры фотоинжектора

- Заряд сгустка электронов несколько пК ÷ десятки нК
- Длительность сгустка десятки фС ÷ десятки пС
- Частота СВЧ излучения 1,3-17 ГГц, длительность импульса несколько мкс
- Мощность СВЧ импульса от единиц до десятков МВт
- Длина волны лазерного излучения 250-1000 нм
- Энергия электронного сгустка на выходе 5-10 МэВ
- Разброс по энергии не более 1%, поперечный эмиттанс пучка ~1 ммрад

Фотокатод – важный элемент фотоинжектора

Требования к фотокатоду

- 1. Высокая квантовая эффективность QE
- 2. Долговечность и не критичность к вакууму и загрязнениям
- 3. Электропроводность для работы при высокой частоте следования импульсов
- 4. Низкая работа выхода возможность работы длинноволновыми лазерами
- 5. Возможность охлаждения фотокатода для снижения энергетического разброса

Применяемые в настоящее время фотокатоды

- На основе металлов (Cu, Y, Mg) низкая QE ~ 5х10⁻⁵ (Cu) на λ=250 нм
- На основе полупроводников GaAs, AlGaN, CsK2Sb, Cs3Sb с активацией многощелочными металлами Cs, Rb,K, Na, Li или окислами типа CsO2.

 Широко применяется фотокатод на основе Cs2Te – обладающий высокой QE~ 1% на λ=270 нм. Эти катоды требуют высокого 10⁻¹⁰ Торр вакуума, критичны к загрязнению, нестабильны из-за миграции атомов Cs, недолговечны.

 На основе ультрананокристаллической легированной азотом алмазной пленки осажденной на подложку из переходных металлов (Mo, W, Ti) – продемонстрирована работа при p=10⁻⁵ Торр и QE~10⁻³ ÷5x10⁻⁶ при λ=200-450 нм, при низком эмиттансе.

Алмаз – перспективный материал для фотокатода

Свойства алмаза

- 1. Химическая и радиационная стойкость (долговечность)
- 2. Возможность работать при более низком вакууме ~ 10⁻⁶ ÷ 10⁻⁵ Торр
- 3. Высокая QE > 10⁻⁶ НКА пленки на λ=254 нм
- 4. Возможность легирования донорами и акцепторами, повышение QE на больших λ
- 5. Возможность создания многослойных структур CVD методом
- 6. Низкое/отрицательное сродство к электрону при пассивации водородом
- 7. Рекордная теплопроводность возможность эффективного охлаждения

Структура энергетических зон алмаза

Коэффициент поглощения от концентрации N2

[Optical Engineering of Diamond, First Edition. Edited by Rich P. Mildren and James R. Rabeau. 2013 Wiley-VCH Verlag GmbH & Co. KGaA]

НРНТ синтез алмаза

HPHT – High Temperature - High Pressures – высокая температура - высокое давление

Luoyang Qiming Superhard Material Co., Китай

СVD синтез алмаза

CVD – Chemical vapor deposition – Химическое осаждение из газовой фазы

[P.W. May. Diamond thin films: a 21st-century material. Phil. Trans. R. Soc. Lond. A (2000) **358**, 473–495]

> Схематическое изображение CVD реактора: (1) стенка CBЧ резонатора; (2) верхняя подвижная стенка резонатора; (3) регулируемое устройство связи на основе коаксиального волновода; (4) кварцевая колба; (5) CBЧ разряд; (6) подложка; (7) диагностическое окно, (8) ввод газовой смеси

[А.Л.Вихарев Исследование газофазного синтеза поли- и монокристаллических алмазных плёнок в плазме СВЧ разряда. Известия вузов. Радиофизика 2007, Том L, № 10–11]

Схема реакций конверсии углеводородов и поверхностных реакций образования алмаза

[А.М.Горбачев и др. Плазмохимические процессы с участием углеродосодержащих соединений в непрерывном СВЧ разряде. Физика плазмы, 33 (2007) № 10, 948–957]

[Paul W. May. Phil. Trans. R. Soc. Lond. A (2000) **358**, 473–495]

Быстро

Реакторы для плазмохимического синтеза CVD алмаза

СVD реактор с многомодовым СВЧ резонатором

Частота: 2,45 ГГц Мощность: 10 кВт

[A.L.Vikharev et al. Multimode cavity type MPACVD reactor for large area diamond film deposition. Diamond & Related Materials 83 (2018) 8–14]

CVD реактор для получения дельта-легированного алмаза

Частота: 2,45 ГГц Мощность: 3 кВт

1 – кварцевая труба, 2 – держатель подложки, 3 – плазма, 4 – СВЧ резонатор, 5 – 2.45 ГГц магнетрон, 6 – волновод, 7 – система подачи смесей газов, 8 – система откачки, 9 – световод, 10 – монохроматор, 11 – ФЭУ, 12 – осциллограф, 13 – компьютер

[A.L.Vikharev et al. Novel microwave plasma-assisted CVD reactor for diamond delta doping. Phys. Status Solidi RRL 10, No. 4, 324–327 (2016)]

Алмазные материалы, получаемые CVD методом

Поликристаллические алмазные пленки, диски, пластины

STERMO	Contrasts & Writers Writers & Writers (1979) 1979 1979	Bear.
5 m m	Diamond & Related Materials	
ELMOTER .	away tomopoge: www.sterrige.co.v.v.v.te.as.ust.	Chine .
AB. Muchnikov *, AL Vik	MPACVD reactor operation 2 MPACVD reactor operation 2 harev, A.M. Gorbichev, D.B. Radishev and Amm	with at Explinious
pendit nined pendit and charactenepting proposi diamond nineana and pubmi structur stados	regime of a 2.45 GPE MINCUD on a second stars of the high quality COD damond layers for methode gas persons or 2021 and 2000 tars 2024 and 2000 tars of the The (1400) 1893's regime crystal damond seeks 2.5 × 1.5 ×	2010 Operation in population of population of population of the second s

[S.Bogdanov et al. Growth-rate Enhancement of Highquality, Low-loss CVD-produced Diamond Disks ... Chem. Vap. Deposition 2014, 20, 32–38]

Монокристаллы

[A.L.Vikharev et al. Investigation of homoepitaxial growth by microwave plasma CVD ... Materials Today Communications 22 (2020) 100816]

Нанокристаллические алмазные пленки

[V.V. Chernov et al. The Nucleation and Growth of Nanocrystalline Diamond Films ... Fullerenes, Nanotubes and Carbon Nanostructures, 2012, 20:4-7, 600-605]

http://old.ipfran.ru/structure/dep_140/result.html

Легирование алмаза различными примесями

азотом

Профили ВИМС (вторичная ионная масс-спектрометрия)

[M.A.Lobaev et al. Investigation of boron incorporation in delta doped diamond layers by secondary ion mass spectrometry. Thin Solid Films (2018) 653. 215–222] [M.A.Lobaev et al. Influence of CVD diamond growth conditions on nitrogen incorporation. Diamond & Related Materials 72 (2017) 1–6]

Возможности CVD технологии синтеза алмаза для создания фотокатодов

СVD метод позволяет

1. Осаждать моно, поли- и нанокристаллические алмазные пленки CVD методом

2. Легировать осаждаемые пленки азотом, фосфором или бором в диапазоне концентраций 10¹⁶ – 10²¹ см⁻³

3. Осаждать многослойные структуры на основе тонких (толщиной от нескольких нм до мкм) алмазных пленок с разным типом и уровнем легирования.

4. Осаждать алмазные пленки на подложках из алмаза, кремния, молибдена

Направления исследований

- Типы и уровни легирования
- Морфология поверхности нанокристаллических алмазных пленок
- Многослойные пленки (в том числе монокристаллические)

[О.А.Иванов. Экспериментальное исследование сильноточных катодов на основе алмазных плёнок ... Известия вузов. Радиофизика. 2014, Том LVII, № 10, с.797]

Фотокатод на основе нанокристаллической алмазной пленки

[K.Quintero et.al. High quantum UNCD diamond photocathode for photoinjector applications. Appl.Phys. Lett. 105, (2014)]

Ультрананокристаллическая алмазная пленка, 150 нм, легирована N₂, H-terminated

Алмазный фотокатод с высокой квантовой эффективностью

[G.Chen et.al. Demonstration of nitrogen-incorporated ultrananocrystalline diamond photocathodes in a RF gun environment. Appl. Phys. Lett. 117, 171903 (2020)]

Один из катодов был изготовлен за 2 года до эксперимента

Многослойный фотокатод на основе алмаза

Структура фотокатода

- 1 подложка кремний (НКА пленки) или НРНТ алмаз (монокристаллические пленки)
- 2 поглощающий слой сильно легированного алмаза n или p-типа
- 3 слой транспорта (диффузии) из нелегированного или слабо легированного алмаза
- 4 эмитирующий слой пассивированный водородом

Принцип (стадии) работы фотокатода

- Поглощение фотонов и образование фотоэлектронов в зоне проводимости
- Транспорт (диффузия) фотоэлектронов из глубины фотокатода к его поверхности и их термализация за счет столкновений

• Эмиссия термализованных фотоэлектронов в вакуум за счет внешнего высокочастотного поля при превышении их энергии над работой выхода поверхностного слоя

Оценка параметров различных слоев фотокатода

Поглощающий слой. Для лазерного излучения с длиной волны 530 нм, при легировании азотом характерное сечение ионизации азота в алмазе составляет $\sigma \sim 10^{-17}$ см⁻², при концентрации N₂ $\sim 10^{20} \div 10^{21}$ см⁻³ необходимая для поглощения толщина слоя равна 0,1-1 мкм. При полной ионизации примеси N₂ $\sim 10^{20}$ см⁻³ в слое толщиной 0,1 мкм и радиусом 3 мм образуется заряд ~ 100 пК.

Транспортный слой. Термализация фотоэлектронов и снижение теплового эмиттанса происходит вследствие рассеяния и локализации электронов вблизи дна зоны проводимости. При охлаждении катода энергетический разброс соответствует его температуре ΔE=kT. Время рекомбинации фотоэлектронов в нелегированном алмазе может составлять мс, а следовательно толщина слоя должна иметь величину не более 1-5 мкм. Необходимая для термализации толщина слоя при различной температуре приведена на рисунке.

Эмиссионный слой. Легированный бором и пассивированный водородом слой с толщиной в несколько нм, сравнимой с размером возникающего на поверхности дипольного слоя С-Н. Слой обладает проводимостью и низкой работой выхода.

Таким образом, CVD алмаз благодаря уникальным физическим свойствам, возможности легирования и создания сложных многослойных структур является перспективным материалом для фотокатодов.

Однако, для его практического применения необходимо проведение дополнительных исследований.

Спасибо за внимание!